Про електропривод
Головна | Каталог статей | Реєстрація | Вхід
 
Середа, 01.01.2025, 07:08
Вітаю Вас Гість | RSS
Меню сайта
Категории раздела
Разное [286]
Теги
зимние шины купить зимние шины купить летние шины купить литые диски купить шины летние шины литые диски резина Шины шины диски радиомодели радиоуп радиоуправляемые вертолеты радиоуправляемые игрушки радиоуправляемые машинки радиоуправляемые машины радиоуправляемые модели LEGO лего Итальянские итальянские элитные гостиные итальянские элитные спальни элитная итальянская мебель элитная итальянская мягкая мебель элитная мебель peg perego детские электромобили куп купить электромобиль продажа электромобилей электромобили электромобили peg perego электромобили для детей ремонт ноутбуков ремонт ноутбуков acer ремонт ноутбуков sony ремонт ноутбуков toshiba ремонт ноутбуков москва срочный ремонт ноутбуков http://www.stardesign.org оптимизация сайта оптимизация сайтов Продвижение сайта продвижение сайтов раскрутка сайта раскрутка сайтов новости Тулы тульские новости выговориться сайт где можно выговориться хочу выговориться акції знижки на карті недорого нерухомість оренда продаж продам робота товари
Статистика
Форма входа
Головна » Статті » Разное

Ускоритель заряженных частиц

Ускоритель заряженных частиц

Ускоритель заряженных частиц — класс устройств для получения заряженных частиц (элементарных частиц, ионов) высоких энергий. Тур Современные ускорители, подчас, являются огромными дорогостоящими комплексами, которые не может позволить себе даже крупное государство. К примеру, Большой адронный коллайдер в ЦЕРНе представляет собой кольцо длиной почти 27 километров.

В основе работы ускорителя туры заложено взаимодействие заряженных частиц с электрическим и магнитным полями. Электрическое поле способно напрямую совершать работу над частицей, то есть увеличивать её энергию. Магнитное же поле, создавая силу Лоренца, лишь отклоняет частицу, не изменяя её энергии, и задаёт орбиту, по которой движутся частицы.

Ускорители можно принципиально разделить на две большие группы. Это линейные ускорители, где пучок частиц однократно проходит ускоряющие промежутки, и циклические ускорители, в которых пучки движутся по замкнутым кривым (например, окружностям), проходя ускоряющие промежутки по многу раз. Можно также классифицировать ускорители по назначению: коллайдеры, источники нейтронов, бустеры, источники синхротронного излучения, установки для терапии рака, промышленные ускорители.

Ускорители заряженных частиц — устройства для получения заряженных частиц (электронов, протонов, атомных ядер, ионов) больших энергий. Ускорение производится с помощью электрического поля, способного изменять энергию частиц, обладающих электрическим зарядом. Магнитное поле может лишь изменить направление движения заряженных частиц, не меняя величины их скорости, поэтому в ускорителях оно применяется для управления движением частиц (формой траектории). Обычно ускоряющее электрическое поле создаётся внешними устройствами (генераторами). Но возможно ускорение с помощью полей, создаваемых др. заряженными частицами; такой метод ускорения называется коллективным (см. Ускорения заряженных частиц коллективные методы). У. з. ч. следует отличать от плазменных ускорителей, в которых происходит ускорение в среднем электрически нейтральных потоков заряженных частиц (плазмы). У. з. ч. — один из основных инструментов современной физики. Ускорители являются источниками как пучков первичных ускоренных заряженных частиц, так и пучков вторичных частиц (мезонов, нейтронов, фотонов и др.), получаемых при взаимодействии первичных ускоренных частиц с веществом. Пучки частиц больших энергий используются для изучения природы и свойств элементарных частиц, в ядерной физике, в физике твёрдого тела. Всё большее применение они находят и при исследованиях в др. областях: в химии, биофизике, геофизике. Расширяется значение У. з. ч. различных диапазонов энергий в металлургии — для выявления дефектов деталей и конструкций (дефектоскопия), в деревообделочной промышленности — для быстрой высококачественной обработки изделий, в пищевой промышленности — для стерилизации продуктов, в медицине — для лучевой терапии, для «бескровной хирургии» и в ряде др. отраслей. 1. История развития ускорителей Толчком к развитию У. з. ч. послужили исследования строения атомного ядра, требовавшие потоков заряженных частиц высокой энергии. Применявшиеся вначале естественные источники заряженных частиц — радиоактивные элементы — были ограничены как по интенсивности, так и по энергии испускаемых частиц. С момента осуществления первого искусственного превращения ядер (1919, Э. Резерфорд) с помощью потока a-частиц от радиоактивного источника начались поиски способов получения пучков ускоренных частиц. В начальный период (1919—32) развитие ускорителей шло по пути получения высоких напряжений и их использования для непосредственного ускорения заряженных частиц. В 1931 амер. физиком Р. Ван-де-Граафом был построен электростатический генератор, а в 1932 англ. физики Дж. Кокрофт и Э. Уолтон из лаборатории Резерфорда разработали каскадный генератор. Эти установки позволили получить потоки ускоренных частиц с энергией порядка миллиона электрон-вольт (Мэв). В 1932 впервые была осуществлена ядерная реакция, возбуждаемая искусственно ускоренными частицами, — расщепление ядра лития протонами. Период 1931—44 — время зарождения и расцвета резонансного метода ускорения, при котором ускоряемые частицы многократно проходят ускоряющий промежуток, набирая большую энергию даже при умеренном ускоряющем напряжении. Основанные на этом методе циклические ускорители — циклотроны (Э. О. Лоуренс)— вскоре обогнали в своём развитии электростатические ускорители. К концу периода на циклотронах была достигнута энергия протонов порядка 10—20 Мэв. Резонансное ускорение возможно и в линейных ускорителях Однако линейные резонансные ускорители не получили в те годы распространения из-за недостаточного развития радиотехники. В 1940 амер. физик Д. У. Керст реализовал циклический индукционный ускоритель электронов (бетатрон), идея которого ранее уже выдвигалась (амер. физик Дж. Слепян, 1922; швейц. физик Р. Видероэ, 1928). Разработка ускорителей современного типа началась с 1944, когда сов. физик В. И. Векслер и независимо от него (несколько позже) амер. физик Э. М. Макмиллан открыли механизм автофазировки, действующий в резонансных ускорителях и позволяющий существенно повысить энергию ускоренных частиц. На основе этого принципа были предложены новые типы резонансных ускорителей — синхротрон, фазотрон, синхрофазотрон, микротрон. В это же время развитие радиотехники сделало возможным создание эффективных резонансных линейных ускорителей электронов и тяжёлых заряженных частиц. В начале 50-х гг. был предложен принцип знакопеременной фокусировки частиц (амер. учёные Н. Кристофилос, 1950; Э. Курант, М. Ливингстон, Х. Снайдер, 1952), существенно повысивший технический предел достижимых энергий в циклических и линейных У. з. ч. В 1956 Векслер опубликовал работу, в которой была выдвинута идея когерентного, или коллективного, метода ускорения частиц. Последующие два десятилетия можно назвать годами реализации этих идей и технического усовершенствования У. з. ч. Для ускорения электронов более перспективными оказались линейные резонансные ускорители. Крупнейший из них, на 22 Гэв, был запущен в 1966 амер. физиком В. Панофским (США, Станфорд). Для протонов наибольшие энергии достигнуты в синхрофазотронах. В 1957 в СССР (Дубна) был запущен самый крупный для того времени синхрофазотрон — на энергию 10 Гэв. Через несколько лет в Швейцарии и США вступили в строй синхрофазотроны с сильной фокусировкой на 25—30 Гэв, а в 1967 в СССР под Серпуховом — синхрофазотрон на 76 Гэв, который в течение многих лет был крупнейшим в мире. В 1972 в США был создан синхрофазотрон на 200—400 Гэв. В СССР и США разрабатываются проекты ускорителей на 1 000—5 000 Гэв. Современное развитие ускорителей идёт как по пути увеличения энергии ускоренных частиц, так и по пути наращивания интенсивности (силы тока) и длительности импульса ускоренного пучка, улучшения качества пучка (уменьшения разброса по энергии, поперечным координатам и скоростям). Параллельно с разработкой новых методов ускорения совершенствуются традиционные методы: исследуются возможности применения сверхпроводящих материалов (и соответствующей им техники низких температур) в магнитах и ускоряющих системах, позволяющих резко сократить размеры магнитных систем и энергетические расходы; расширяется область применения методов автоматического управления в ускорителях; ускорители дополняются накопительными кольцами, позволяющими исследовать элементарные взаимодействия во встречных пучках (см. Ускорители на встречных пучках). При этом особое внимание уделяется уменьшению стоимости установок.
Категорія: Разное | Додав: tolik_volkov (24.10.2010)
Переглядів: 846 | Рейтинг: 0.0/0
Всього коментарів: 0
Ім`я *:
Email *:
Код *:
Поиск



1970.ucoz.ru © 2025